

Treatment of slow Flow after Primary Percutaneous coronary Intervention with Flow-mediated hyperemia:

AMM Madrid Microcirculation Hospital Universitario The RAIN-FLOW randomized triarincesa

Journal of the American Heart Association

ORIGINAL RESEARCH

Treatment of Slow-Flow After Primary Percutaneous Coronary Intervention With Flow-Mediated Hyperemia: The Randomized RAIN-FLOW Study

Josep Gomez-Lara ©, MD, PhD; Montserrat Gracida, MD; Fernando Rivero ©, MD, PhD; Alejandro Gutiérrez-Barrios, MD; Guillem Muntané-Carol, MD, PhD; Rafael Romaguera @, MD, PhD; Lara Fuerties, MD, Ana Marcano ®, MD, Gerard Roura, MD, PhD; José Luis Ferreiro, MD, PhD; Luis Teruel ©, MD Salvatore Brugaletta ©, MD, PhD; Fernando Alfonso ©, MD, PhD; Josep Comin-Colet, MD, PhD; Joan-Antoni Gromz-Hospital @, MD, PhD Josep Gómez Lara Hospital Universitari de Bellvitge, Barcelona 30/11/2023

Institut Català de la Salut Gerència Territorial Metropolitana Sud

STEMI in Spain

 Around 30% of Percutaneous Coronary Interventions (PCIs) are performed as emergent Primary-PCI in STEMI patients.

STEMI in Spain

Causes of In-hospital death in STEMI patients:

Causes of In-hospital death in STEMI patients:

 Table 4. Predictors of Mortality During the First Year

 Obtained From Univariable and Multivariable Cox

 Proportional Hazards Models | Universitario

Characteristic	Unadjusted HR (95% CI)	Adjusted HR (95% CI)
No reflow	3.35 (1.97 to 5.69)	1.91 (1.1 <mark>1 to 3.30</mark>)
Age (for 10-year increase)	2.06 (1.67 to 2.55)	1.85 (1.49 to 2.28)
Diabetes	2.53 (1.58 to 4.04)	1.81 (1.11 to 2.94)
Killip class (for 1-class increase)	2.76 (2.30 to 3.30)	2.38 (1.97 to 2.88)
Creatinine (for 1-mg/dL increase)	2.19 (1.77 to 2.71)	1.80 (1.38 to 2.35)

LV indicates left ventricle; HR, hazard ratio.

Definition:

Coronary **TIMI flow** \leq 2 after appropriate revascularization (with stent implantation) without significant residual stenosis (>50% DS), coronary dissection, spasm or thrombus.

STEMI patient (Occlusion LAD)

After thrombus aspiration (x4) + IIb/IIIa inhibitor

Afterstentimplantation (Absorb)

Definition:

Coronary **TIMI flow** \leq 2 after appropriate revascularization (with stent implantation) without significant residual stenosis (>50% DS), coronary dissection, spasm or thrombus.

Treatment strategies:

Reperfusion time

Others: B-blokers, statines,,...

Treatment strategies:

Guidelines:

9.1.5.2. Interventions to protect the microcirculation

The damage inflicted on the myocardium during AMI is the result of ischaemia and subsequent reperfusion (ischaemia/reperfusion injury). In patient-level pooled analyses, infarct size and MVO are independent predictors of long-term mortality and HF in survivors of STEMI.^{436,478} Strategies to reduce ischaemia/reperfusion injury in general (and MVO in particular) remain an unmet clinical need. Further information regarding interventions to protect the microcirculation that are under clinical or experimental investigation is presented in the Supplementary data online. **Recommendation Table 5** — Recommendations for antiplatelet and anticoagulant therapy in acute coronary syndrome

Recommendations Hospital Universitations	Class ^a	Level ^b
Antiplatelet therapy	~~~	
GP IIb/IIIa receptor antagonists should be considered		
		C
if there is evidence of no-reflow or a thrombotic	lla	C

Hypothesis:

Flow-mediated hyperemia with the Ray-۲ Flow microcatheter at 20 ml/min induces a more powerful, well-tolerated and steady hyperemia than hyperemic drugs. MMM

Madrid Microcirculation Meeting - 4th Edition -

Journal of the American Heart Association

ORIGINAL RESEARCH

Treatment of Slow-Flow After Primary Percutaneous Coronary Intervention With Flow-Mediated Hyperemia: The Randomized RAIN-FLOW Study

Josep Gomez-Lara 🙆, MD, PhD; Montserrat Gracida, MD; Fernando Rivero 😳, MD, PhD; Alejandro Gutlérrez-Barrios, MD; Guillem Muntané-Carol, MD, PhD; Rafael Romaguera O, MD, PhD; Lara Fuentes. MD: Ana Marcano 🙁 MD: Gerard Roura, MD. PhD: José Luis Ferreiro, MD. PhD: Luis Teruel 🤒 MD: Salvatore Brugaletta 0. MD, PhD; Fernando Alfonso 0, MD, PhD; Josep Comín-Colet, MD, PhD; Joan-Antoni Gomez-Hospital O, MD, PhD

ORIGINAL RESEARCH

Treatment of Slow-Flow After Primary Percutaneous Coronary Intervention With Flow-Mediated Hyperemia: The Randomized RAIN-FLOW Study

Josep Gomez-Lara 0, MD, PhD; Montserrat Gracida, MD; Fernando Rivero 0, MD, PhD; Alejandro Gutlérrez-Barrios, MD; Guillem Muntané-Carol, MD, PhD; Rafael Romaguera ¹⁰, MD, PhD; Lara Fuentes, MD; Ana Marcano ¹⁰, MD; Gerard Roura, MD, PhD; José Luis Ferreiro, MD, PhD; Luis Teruel ¹⁰, MD;

Patients with STEMI undergoing PPCI

Endpoints:

1) To compare the **TIMI frame count** after 2-min of hyperemia (flow-mediated vs. pharma-mediated). Core-lab assessment.

Madrid Microcirculation Meeting - 4th Edition -

After Flow-Mediated Hyperemia

Endpoints:

1) To compare the **TIMI frame count** after 2-min of hyperemia (flow-mediated vs. pharma-mediated). Core-lab assessment.

2) To compare the Minimal Microcirculatory Resistance (MMR) after 2'15" of Flow-Mediated hyperemia (in the flow-mediated group) vs. the MMR at 15' in the Pharma-Mediated group (with prior administrarion of hyperemic drugs). Core-lab assessment.

Results:

The study was prematurely terminated due to:

- Slow recruitment (67 patients after 2 years of inclusion period).
- An interim analysis of efficacy showed no differences in both endpoints.

Results:

There was no difference regarding both co-primary endpoints:

Results:

There was no difference regarding both co-primary endpoints:

Results:

In-hospital outcomes:

	All patients (n=67)	Pharma-mediated hyperemia group (n=30)	Saline-mediated hyperemia group (n=37)	P value
All-cause death	7 (10.4%)	2 (6.7%)	5 (13.5%)	0.447
Cardiac rupture	2 (3.0%)	0	2 (5.4%)	
Acute ventricular septal defect	U1 (£5%) ON	• Hospital	1-(2.7%)/ersital	10
Cardiogenic shock th Edi	3 (4.5%)		2 (5.4%) nces	a
Stent thrombosis	1 (1.5%)	1 (3.3%)*	0	
Nonfatal heart failure	18 (26.9%)	5 (16.7%)	13 (35.1%)	0.105
Hemodynamic support				
Inotropic drugs	9 (13.4%)	2 (6.9%)	7 (18.9%)	0.279
Inotropic drugs+left ventricle assist device	4 (6.0%)	0	4 (11.1%)	0.120
Stent thrombosis	2 (3.0%)	1 (3.3%)*	1 (2.7%)	1.000
Revascularization of nonculprit vessels	20 (30.0%)	7 (23.3%)	13 (35.1%)	0.140
Other nonfatal complications				
Atrial fibrillation (unknown)	2 (3.0%)	2 (6.7%)	5 (13.5%)	0.498
Need permanent pacemaker	1 (1.5%)	0	1 (2.7%)	1.000
Major bleeding	3 (4.5%)	2 (6.7%)	1 (2.7%)	1.000
Intraventricular thrombus	3 (4.5%)	1 (3.3%)	2 (5.4%)	1.000

*One patient with stent thrombosis presented with in-hospital cardiogenic shock and death.

Discussion:

Not reliable results of MMR after 2 minutes of saline infusion at 20 ml/min?:

- Angiographic TIMI flow improved after saline but this was not reflected in Q/R values.

MMM	Madrid Micro Meeting - 4t	Pharma-mediated hyperemia at 15 s (n=30)	Flow-mediate	ed hy Salue	peremia group (n=37) At 135 s	Unive Prin	rsitario C ^P osa value [†]	P value‡
Pressure at hyperemia, mmHg								
Aortic		84.0±18.9	82.5±19.6	=	82.4±18.1	0.901	0.747	0.715
Distal		81.4±19.5	77.0±20.1	=	77.0±18.7	1.000	0.372	0.353
Fractional flow reserve, val	ue	0.97±0.05	0.93±0.07	=	0.93±0.08	0.254	0.021	0.048
Absolute coronary blood fl	ow, mL/min	161.8±101.1	149.6±122.5	>	117.4±84.0	<0.001	0.665	0.056
Normalized value		166.2±105.8	159.8±130.4		121.6±82.0	0.001	0.828	0.058
Minimal microcirculatory re	esistance, Wood units	753.6±661.5	849.9±702.0	<	993.3±740.8	<0.001	0.571	0.174

 Table 4.
 Physiologic Results After Slow Flow Treatment

*P value indicates the paired differences of physiologic parameters at 15 and at 135 seconds in the flow-mediated hyperemia group.

[†]*P* value indicates the difference between the study groups at 15 seconds of the saline infusion.

[‡]*P* value indicates the difference between the physiologic results obtained at 15 seconds in the pharmacologic and at 135 seconds in the flow-mediated hyperemia group.

Discussion:

Not reliable results of MMR after 2 minutes of saline infusion at 20 ml/min?:

- Angiographic TIMI flow improved after saline but this was not reflected in Q/R values.

Discussion:

Not reliable results of MMR after 2 minutes of saline infusion at 20 ml/min?:

- Angiographic TIMI flow improved after saline but this was not reflected in Q/R values.
- Two patterns of Q/R during saline infusion in the Flow-Mediated hyperemia group:

Discussion:

Not reliable results of MMR after 2 minutes of saline infusion at 20 ml/min?:

- Angiographic TIMI flow improved after saline but this was not reflected in Q/R values.
- Two patterns of Q/R during saline infusion in the Flow-Mediated hyperemia group:

Discussion:

Insufficient saline clearance was associated with:

- Sub-acute MI
- Worse pre-treatment TIMI flow
- Worse final TIMI flow
- Outcomes

Table S1. Main characteristics of patients with different thermodilution patterns

undergoing 2-minute flow-mediated hyperemia.

	Insufficient saline clearance pattern (n=7)	Appropriate saline clearance pattern (n=30)	р
Baseline clinical characteristics: Age Males Hypertension Hypercholesterolemia Diabetes mellitus	72.7 ± 9.6 3 (42.9%) 6 (85.7%) 3 (42.9%) 3 (42.9%)	69.4 ± 13.8 22 (75.9%) 15 (51.7%) 18 (62.1%) 11 (39.3%)	0.552 0.167 0.200 0.418 1.000
STEMI characteristics: Chest pain onset to PPCI, min Killip class > 1 Number vessel disease > 1 Initial TIMI flow 0 LAD as culprit vessel	555.0 ± 246.6 3 (42.9%) 3 (42.9%) 7 (100.0%) 4 (57.1%)	295.0 ± 189.8 11 (36.7%) 16 (53.3%) 21 (72.4%) 19 (65.5%)	0.004 1.000 0.684 0.309 0.686
TIMI flow before slow flow treatment a log of the slow flow treatm	0 5 (71.4%) 2 (28.6%) 0	2 (6.9%) 9 (31.0%) 18 (62.1%) 0	0.161
TIMI flow after slow flow treatment 0 1 2 3	0 3 (42.9%) 4 (57.1%) 0	0 2 (6.9%) 18 (62.1%) 9 (31.0%)	0.023
Angiographic cTFC, n: Before slow-flow treatment* After slow-flow treatment Delta	76.3 ± 41.9 60.3 ± 23.2 15.7 ± 18.2	50.6 ± 23.2 34.9 ± 17.0 14.6 ± 18.7	0.045 0.002 0.891
Physiologic values at 15 seconds Absolute coronary blood flow, ml/min Minimal microcirculatory resistance Fractional flow reserve	68.9 ± 28.0 1384.0 ± 872.3 0.95 ± 0.09	169.1 ± 128.7 721.0 ± 603.6 0.93 ± 0.07	0.050 0.023 0.408
Physiologic values at 135 seconds Absolute coronary blood flow, ml/min Minimal microcirculatory resistance Fractional flow reserve	51.9 ± 22.9 1711.0 ± 967.7 0.94 ± 0.11	133.2 ± 85.9 820.1 ± 570.4 0.93 ± 0.07	0.019 0.003 0.723
In-hospital outcomes: Death Non-fatal Heart Failure	2 (28.6%) 3 (42.9%)	3 (10.3%) 10 (34.5%)	0.244 0.686

Conclusions:

1) Flow-Mediated Hyperemia with 2-min of saline infusion via microcatheter is as effective as hyperemic drugs to improve the final TIMI flow

Madrid Microcirculation Meeting - 4th Edition -

Conclusions:

1) Flow-mediated hyperemia with 2-min of saline infusion via microcatheter is as effective as hyperemic drugs to improve the final TIMI flow

2) However, neither pharmacologic or flow-mediated hyperemia seem effective to restore a normal final TIMI flow and patients still present with remarkable number of in-hospital events. Meeting - 4th Edition -

Conclusions:

1) Flow-mediated hyperemia with 2-min of saline infusion via microcatheter is as effective as hyperemic drugs to improve the final TIMI flow

2) However, neither pharmacologic or flow-mediated hyperemia seem effective to restore a normal final TIMI flow and patients still present with remarkable number of in-hospital events.

3) Assessment of the hyperemic response to 2-min of flow-mediated hyperemia may distinguish patients with different response to hyperemic stimuli.

Results:

Serial assessment of the coronary Q/R in the culprit vessel few days latter:

Figure 5. Absolute coronary blood flow and minimal microcirculatory resistance changes between baseline and follow-up procedures.

Fourteen patients underwent thermodilution-based physiologic assessment at baseline (post intervention) and at follow-up. Baseline values were estimated at 15 seconds in the pharmacologic (blue) and at 135 seconds in the flow-mediated hyperemia group (red).

Causes:

Causes:

- Slow flow / No reflow is caused due to temporary microvascular dysfunction.

- In STEMI patients with slow flow, microvascular dysfunction is mainly mediated by **microvascular obstruction (MVO)** associated with:

- Thrombus embolization.
- Intra-myocardial edema.
- Microvascular spasm.
- Endothelial dysfunction and swelling.
- Microcirculatory hemorrhages.
- Reperfusion injury.

Prevalence and clinical significance:

- n = 1406
- Pts with STEMI undergoing PCI
- No reflow defined as TIMI <3 flow or TMPG 0-1 after successful PCI (10 min post-PCI)
- Occurred in 30% of pts.

Ndrepepa G, et al. J Am Coll Cardiol. 2010;55:2383-2389.

Prevalence and clinical significance:

- n = 1406
- Pts with STEMI undergoing PCI
- No reflow defined as TIMI <3 flow or TMPG 0-1 after successful PCI (10 min post-PCI)
- Occurred in 30% of pts.

Ndrepepa G, et al. J Am Coll Cardiol. 2010;55:2383-2389.

Ross AM, et al. J Am Coll Cardiol. 2005; 45:1775-80.

Slow flow / No reflow

Adenosine:

- A total of 2118 patients with STEMI treated with Primary-PCI or Thrombolysis.
- Randomized to 3: placebo vs. Adenosine 50 μ g/Kg/min vs. 70 μ g/Kg/min for 3 hours.
- Underwent to SPECT at 24 hours of the hospitalization.

	Treatment Groups				
End Point	Placebo	Pooled Adenosine	Adenosine* 50 μg/kg/min	Adenosine 70 μg/kg/min	p Value†
ntention-to-treat analysis					
n	703	1,414	701	713	
Death	83 (11.8%)	146 (10.3%)	73 (10.4%)	73 (10.2%)	0.29
In-hospital CHF	28 (4.0%)	60 (4.2%)	28 (4.0%)	32 (4.5%)	0.75
Re-hospitalization for CHF	30 (4.3%)	56 (4.0%)	27 (3.9%)	29 (4.1%)	0.81
Composite	126 (17.9%)	231 (16.3%)	116 (16.5%)	115 (16.1%)	0.43

Adenosine & Nitroprusside:

- A total of 240 patients with STEMI and occluded culprit lesion (TIMI 0/I pre-ICP).
- Randomized to: thrombus aspiration (TA) vs. TA+Adenosine vs. TA+Nitroprusside via microcatheter distal to the occlusion.

REOPEN-AMI trial

Adenosine & Nitroprusside:

- A total of 247 patients with STEMI.
- Randomized to: thrombus aspiration (TA) vs. TA+Adenosine vs. TA+Nitroprusside via microcatheter distal to the occlusion.
- Underwent to cardiac MRI 1-4 days after PCI.

Madrid Microcirculation Meeting - 4th Edition -

 Table 3
 Cardiac magnetic resonance data according to treatment group

Characteristic	Adenosine, <i>n</i> = 63	SNP, n = 69	Control, n = 65	P-value ^c
Time from MI to CMR (h) Primary endpoint ^d	49.0 (28.4–75.0)	49.7 (26.2–76.1)	49.0 (38.0–74.8)	0.881
Infarct size (%LVM)	10.1 (4.7–16.2)	10.0 (4.2–15.8)	8.3 (1.9–14.0)	0.133

0.8 MACE-free Cumulative Probability HR [IC Adenosine v Standard PCI]: 5.39 (1.18 to 24.60) HR [IC SNP v Standard PCI]: 2.75 (0.53 to 14.16) 0.6 Log-Rank P=0.04 & Global Test of PH P=0.06 0.4 Actuarial MACE-free probability @ 30 days (95% CI): Standard PCI: 0.98 (0.95,1.00) IC Adenosine: 0.88 (0.81,0.95) 0.2 IC SNP: 0.94 (0.89,0.99) Standard PCI - - -IC Adenosine IC SNP 0.0 25 30 10 15 20 Time from Randomisation (days) N at risk

REFLO-STEMI trial

SCACEST en nuestro medio:

UNIVERSITAT DE BARCELONA

B

En los últimos años se ha ٠ evidenciado una disminución de los ingresos por SCA.

muestran que estos se incrementaran en los próximos años debido al envejecimiento de la población.

Dégano IR, et al.; REC 2013

Generalitat de Catalunya Departament de Salut

stitut Català de la Salut Gerència Territoria Metropolitana Sud

 Table 3.
 Predictors of No Reflow Phenomenon Obtained From

 Univariable and Multivariable Logistic Regression Models

Characteristic	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Previous MI	1.61 (1.02 to 2.73)	2.17 (1.18 to 3.99)
C-reactive protein (for 1-mg/L increase)	1.02 (1.01 to 1.03)	1.02 (1.01 to 1.04)
Baseline TIMI flow grade (for 1-grade decrease)	1.98 (1.52 to 2.57)	2.02 (1.47 to 2.76)
Initial perfusion defect (for 5% of the LV increase)	1.10 (1.04 to 1.16)	1.07 (1.01 to 1.13)

indicates left ventricle: 0R-odds ratio. Microcirculation Meeting - 4th Edition -

Ndrepepa G, et al. Circulation CV Int. 2010; 3:27-33

Causas muerte intrahospitalaria en el SCACEST:

		10	~~	-	-
N	\		\	~~~	1-
					1111111111
					+ - + + + + + + + + + + + + + + + + + +

Û

В

UNIVERSITAT DE BARCELONA

Hospital Germans Trias i Pujol (Can Ruti)

	Period 1 1989–1994 (N=1337)	Period 2 1995–1999 (N=960)	Period 3 2000–2004 (N=1059)	Period 4 2005–2009 (N=1535)	Period 5 2010–2017 (N=2698)	<i>P</i> for Trend	
Angina, %	9.8	10.3	8.9	6.0	2.1	<0.001	
Reinfarction, %	1.3	1.5	2.1	1.7	1.7	0.686	5) /
Primary VF, %	7.6	6.9	6.9	6.6	6.8	0.114	FV y reinfarto
VT, %	8.7	7.7	4.4	7.8	3.7	<0.001	
AV block, %	9.7	12.5	6.2	5.8	5.3	<0.001	Arritmias (no FV
AFib/flutter, %	8.4	Mid1.90ci	8.5 ion	7.6	6.1	<0.001	Universitari
VS rupture, %	0.7	0.8	0.9	0.6	0.5	0.609	Dringago
PM rupture, %	0.3	9 0.5	0.4	0.7	Saluo!3/adrid	0.066	Complicaciones
FW rupture, %	1.9	2.1	1.4	0.7	0.9	0.002	mecánicas
Pericarditis, %	7.6	3.6	2.8	2.1	2.8	<0.001	
RV dysfunction, %	9.6	12.1	6.9	5.1	5.0	<0.001	
ACCU LoS, d	5.0	5.5	4.7	3.3	2.4	<0.001	
ACCU mortality, %	8.9	8.1	5.8	3.8	4.2	<0.001	luce of internetic
Anterior wall AMI	11.2	11.0	6.1	4.3	4.7	<0.001	Insuficiencia
Inferior wall AMI	8.9	8.1	5.8	3.4	3.8	<0.001	cardiaca/Shock
28-d mortality, %	10.4	9.9	7.3	5.1	6.0	<0.001	
1-y mortality, %	11.7	13.4	10.5	8.7	9.0	<0.001	

Table 2. In-Hospital Prognosis and Mortality

ACCU indicates acute cardiovascular care unit; AFib, atrial fibrillation; AV, atrioventricular; FW, free-wall; LoS, length of stay; PM, papillary muscle; RV, right ventricle; VF, ventricular fibrillation; VS, ventricular septum; and VT, sustained ventricular tachycardia.

García-García C, et al.; JAHA 2020; 9:e017159

Causas muerte intrahospitalaria en el SCACEST:

Bellvitge

Hospital Universitari

UNIVERSITAT DE BARCELONA

B

Hospital Germans Trias i Pujol (Can Ruti)

Figure 3. Trends in changes in 28-day case fatality related to infarct location between periods.

Inferior wall AMI (blue), anterior wall AMI (green), all STEMI (red). AMI indicates acute myocardial infarction; and STEMI, STsegment-elevation myocardial infarction.

nstitut Català de la <u>Salut</u>

Gerència Territoria

Metropolitana Sud

Figure 6. Early acute-phase mortality relative to maximum Killip–Kimball class during intensive cardiac care unit admission. Period 1 (dark blue), period 2 (red), period 3 (green), period 4 (violet) and period 5 (light blue).

DIBE

Institut d'Investigació Biomèdica de Bellvita

García-García C, et al.; JAHA 2020; 9:e017159

Generalitat de Catalunya Departament de Salut

STEMI in Spain

 Around 30% of Percutaneous Coronary Interventions (PCIs) are performed as emergent Primary-PCI in STEMI patients.

Number of Primary-PCIs

